BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory

Krzysztof Brzezinka, Simone Altmann¹, Isabel Bäurle

Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany

¹ present address: School of Life Sciences, University of Dundee, Dundee, DD2 5DA, UK

Correspondence: Isabel Bäurle, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany

email: isabel.baeurle@uni-potsdam.de

ORCID ID: Isabel Bäurle 0000-0001-5633-8068

Running title: BRUI functions in heat stress memory

Keyword index: Arabidopsis thaliana, heat stress, heat stress memory, priming, chromatin, BRUI, TONSOKU, MGOUN3
Abstract

Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the naïve state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here we report that the chromatin protein BRUSHY1/TONSOKU/MGOUN3 (BRU1/TSK/MGO3) plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSL/NFKBIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory-associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division.

Summary statement: Plants can be primed by a heat stress exposure to deal more efficiently with a future heat stress incident, that occurs after a lag phase at normal growth temperatures. Studying the molecular basis of priming and memory in response to heat stress, we show here that the chromatin protein BRUSHY1 is required for heat stress memory and that it acts through sustaining the activation of heat stress-memory related gene expression during the lag phase. Our findings suggest a model where heat stress memory is mediated through the epigenetic inheritance of chromatin states across cell divisions.
Introduction

As sessile organisms, plants are frequently exposed to environmental conditions that are stressful in the sense that they interfere with their optimal growth and development. Such extreme environmental conditions are likely to increase in frequency and severity with climate change (Battisti and Naylor, 2009, Lobell et al., 2011). In recent years, it has become increasingly clear that plants can be primed by stress exposure and that this enhances their response to a second stress exposure, which may be qualitatively the same or different, after a stress-free period (Bruce et al., 2007, Conrath et al., 2015, Hilker et al., 2016). The molecular basis of priming and memory is still not well understood (Lämke and Bäurle, 2017). However, evidence is emerging that priming of stress-induced gene expression is a crucial component of stress priming that is at least in part mediated by epigenetic regulation. Indeed, several studies indicate that chromatin organization and modifications distinguish genes in the primed state from those in the naïve state (Ding et al., 2012, Mozgova et al., 2015, Brzezinka et al., 2016, Lämke et al., 2016). In dividing tissues, this process involves the inheritance of the primed state across DNA replication and cell division. How this is mediated remains unclear.

Due to the high economic relevance and recurring nature of heat stress (HS), both acute responses as well as longer-term responses including priming and memory have been investigated (Bäurle, 2016, Lämke and Bäurle, 2017, Ohama et al., 2017). The immediate responses to HS have been intensively studied in in all kingdoms; a conserved core module, collectively referred to as the heat shock response (HSR) (Richter et al., 2010), comprises the rapid activation of heat shock transcription factors (HSFs) that in turn induce the expression of heat shock proteins (HSPs), which act as chaperones and prevent or repair protein damage (Akerfelt et al., 2010, Anckar and Sistonen, 2011). In plants the HSR results in the acquisition of thermotolerance and is mediated by a subset of the strongly radiated HSF
family (Scharf et al., 2012, Yeh et al., 2012, Ohama et al., 2017). In *A. thaliana*, seven of the 21 HSF genes have been implicated in the acquisition of thermotolerance, among them three HSFA1 isoforms that act as master regulators of the HSR (Mishra et al., 2002, Schramm et al., 2008, Ikeda et al., 2011, Liu et al., 2011, Yoshida et al., 2011, Scharf et al., 2012, Yeh et al., 2012).

Notably, at the physiological level, HS primes a plant to subsequently withstand a stronger HS even after a lag phase of 3 days at normal growth temperatures (Charng et al., 2006, Charng et al., 2007). This process is called maintenance of acquired thermotolerance or HS memory and is an active process that is genetically separable from the acquisition of thermotolerance, as evidenced by a (growing) list of mutants that are specifically defective in the maintenance rather than the acquisition of thermotolerance (Charng et al., 2006, Charng et al., 2007, Stief et al., 2014, Brzezinka et al., 2016).

HS memory requires *HSFA2*, which is so far the only HSF gene in *A. thaliana* that functions specifically in HS memory (Charng et al., 2007). *HSFA2* expression is induced by HSFA1 isoforms, and *HSFA2* prolongs and amplifies the HS-induction at a subset of HSFA1-target genes (Charng et al., 2007, Liu et al., 2011, Nishizawa-Yokoi et al., 2011, Lämke et al., 2016). The target genes of *HSFA2* are enriched in genes that show sustained activation of gene expression after HS; after a short HS pulse, these genes remain induced for at two to three days, and while their initial induction is not changed in *hsfa2* mutants their transcriptional activity declines faster in *hsfa2* mutants (Stief et al., 2014, Lämke et al., 2016). Interestingly, *HSFA2* binds transiently to memory-gene loci and presumably recruits sustained chromatin modifications, in particular the hyper-methylation of histone H3K4 (Lämke et al., 2016). This hyper-methylation correlates closely with the duration of the memory period. A second link between HS memory and chromatin organization has been reported through the finding that the *FORGETTER1* (*FGT1*) gene is required for sustained
induction of HSA32 and other memory genes after HS (Brzezinka et al., 2016). FGT1 is a highly conserved helicase-domain protein that maintains low nucleosome occupancy throughout the memory phase through the interaction with chromatin remodelers of the SWI/SNF and ISWI classes (Farrona et al., 2004, Li et al., 2014, Brzezinka et al., 2016). Taken together, the current model is that the sustained induction of HS memory-associated genes is mediated through chromatin modifications and involves both nucleosome occupancy and posttranslational modification of nucleosomes. As the sustained induction of gene expression is maintained for several days, an interesting question is whether and how the primed chromatin states are inherited through DNA replication and cell division.

Chromatin regulation also plays an important role in the regulation of somatic stress memory in response to other biotic and abiotic stresses (Bruce et al., 2007, Sani et al., 2013, Hilker et al., 2016, Vriet et al., 2015, Lämke and Bäurle, 2017). In particular, histone H3K4 hyper-methylation has been implicated in stress memory after dehydration and pathogen infection (Jaskiewicz et al., 2011, Ding et al., 2012, Kim et al., 2012, Singh et al., 2014, Feng et al., 2016). The regulation of nucleosome occupancy was implicated in the priming of defence genes (Mozgova et al., 2015).

The BRUSHY1 (BRU1)/ TONSOKU (TSK)/ MGOUN3 (MGO3) gene was originally identified based on its fasciated stems and loss of transcriptional silencing (Guyomarc'h et al., 2004, Suzuki et al., 2004, Takeda et al., 2004). It encodes a nuclear protein with tetratricopeptide-repeat (TPR) and leucine-rich repeats (LRR) protein interaction domains. Bru1 mutant plants have disorganized meristems due to altered WUSCHEL expression, and the stems tend to enlarge and separate into multiple stems (fasciation) (Guyomarc'h et al., 2004, Suzuki et al., 2004). As bru1 is hypersensitive to DNA damage, it was also suggested that BRU1 is involved in DNA damage repair pathways (Takeda et al., 2004). Since mutants in Chromatin assembly factor (CAF-1) components (FASCIATA1 (FAS1) and FAS2) have
similar phenotypes with respect to both developmental aspects and DNA damage hyper-
sensitivity, it was suggested that BRU1 has a similar function (Takeda et al., 2004). CAF-1
deposits H3 and H4 into newly assembling nucleosomes after DNA replication and repair
(Smith and Stillman, 1989, Probst et al., 2009). Thus, BRU1 was proposed to function in the
epigenetic inheritance of chromatin states. This is in line with the observation that in
synchronized cell cultures BRU1 expression peaks during S-phase (Suzuki et al., 2005).

More recently, a BRU1 orthologue was identified in mammals and named
TONSOKU-LIKE (TONSL)/NFκBIL (Duro et al., 2010, O'Connell et al., 2010, O'Donnell
et al., 2010). TONSL interacts with MMS2L and is involved in DNA repair, where the
complex binds to ssDNA and facilitates loading of RAD51 (Huang et al., 2018). TONSL also
regulates DNA replication and acts as a H3-H4 histone chaperone (Piwko et al., 2010,
Campos et al., 2015). Interestingly, a connection to the epigenetic inheritance of chromatin
modifications remains elusive, although the Ankyrin repeat domain of TONSL acts as a
histone reader domain (Saredi et al., 2016).

Here, we report that BRU1 is required for the memory of HS. We show that BRU1 is
required for sustained activation of HS memory-associated genes and that this occurs at the
transcriptional level. The moderate HS used in this study induced only very low amounts of
cell death and did not induce the expression of DNA damage marker genes RAD51 and
PARP2. Neither cell death nor DNA damage marker gene expression is increased in bru1,
indicating that the DNA damage hyper-sensitivity is unlikely to be responsible for the HS
memory defects. In addition, the acquisition of thermotolerance is not affected in bru1, and
mutants in CAF-1 do not display a HS memory defect. The effect on memory-gene
expression is confirmed by our global transcriptome analysis. In summary, we find that
BRU1 is specifically required for HS memory and propose a model where BRU1 acts in the
inheritance of chromatin-based memory components through chromatin reassembly that is
necessitated by nucleosome turnover and DNA replication.

Materials and Methods

Plant Materials and Growth Conditions
Seedlings of the Col-0 or Wassilewskaja (Ws) backgrounds were germinated on GM medium
(1 % (w/v) glucose) under a 16/8 h light/dark cycle at 23/21°C. *hsa32* and *hsp101* were
described previously (Stief *et al.*, 2014). *brul-1* (Ws) and *BRU1:*BRU1-GFP in *brul-1*
background were obtained from S. Takeda (Ohno *et al.*, 2011). *brul-2, brul-4* (N534207,
(Takeda *et al.*, 2004)), *fas1-4* (SAIL662_D10) and *fas2-4* (N533228, both (Exner *et al.*,
2006)) were obtained from the Nottingham Arabidopsis Stock Center.

Thermotolerance assays
Heat treatments were performed on 4 d-old seedlings. Seedlings were treated with an
acclimatizing HS (ACC) of 37°C, followed by 90 min at room temperature, and by 45 min at
44°C, starting 8 h after light onset. As tester HS a 44°C treatment for the indicated duration
was applied at the indicated number of days after ACC. After HS, plants were returned to
normal growth conditions until analysis. Acquisition of thermotolerance and basal
thermotolerance were assayed as described (Stief *et al.*, 2014). For all thermotolerance
assays, all genotypes of one treatment were grown on the same plate.

Gene expression analysis
Transcript levels were quantified by qRT-PCR analysis as described previously (Stief *et al.*, 2014, Brzezinka *et al.*, 2016). In brief, total RNA from flash-frozen seedlings was extracted
using the Hot Phenol method, residual DNA was removed using Turbo DNase (Ambion) and the RNA was reverse transcribed using oligo-dT primers and SuperScript III (Invitrogen). Quantitative PCR was performed on 1:20 diluted cDNA using GoTaq SybrGreen qPCRMasterMix (Promega). Oligonucleotide sequences are listed in Supplemental Table S1. Transcript levels were quantified using the $\Delta\Delta$Ct method. Transcript levels were normalized to the reference genes TUB6 or At4g26410 (Czechowski et al., 2005).

Trypan blue staining for cell death

Trypan Blue staining was performed 96 h after ACC treatment as described (Inagaki et al., 2009). In brief, seedlings were incubated in 0.5 mg/ml trypan blue, dissolved in phenol/glycerol/lactic acid/water/ethanol (1:1:1:1:8), in a boiling water bath for 1 min. The tissues were left in staining solution at room temperature for 1 h, cleared in chlora hydrate solution, and examined with a Leica stereomicroscope.

Microscopy

GFP fluorescence was imaged using a Zeiss LSM710 confocal microscope.

Microarray Analysis

For microarray hybridization, 4 d-old seedlings of Col-0 or bru1-2 were either treated with ACC (see above) and harvested 4 h or 52 h after the end of the treatment (three biological replicates). As control, No-HS samples (three biological replicates) were harvested together with the 4 h ACC samples. The bru1-2 samples described here were part of a larger experiment reported previously, in which the Col-0 samples were already described (Stief et al., 2014). RNA extraction, probe preparation and hybridization of Affymetrix GeneChip ATH1 microarrays and their analysis was described previously (Stief et al., 2014).
clustered heat map analysis was performed using Heatmapper (Babicki et al., 2016) with settings value, average linkage, and Euklidean distance. The microarray data are deposited as GSE83136 and GSE112161.

Results

BRU1 is specifically required for HS memory

From a reverse genetic screen we identified bru1-2 as a mutant with impaired HS memory. 4 d-old seedlings were treated with a two-step acclimation treatment (consisting of 1 h at 37°C and then 45 min at 44°C, see Methods for details), which was followed by a 2 d period at standard growth temperatures, and then a tester HS that is lethal to a plant that has not been acclimated (Figure 1a, (Stief et al., 2014)). As a control we included the hsa32 mutant that was previously shown to have a defective HS memory (Charng et al., 2006). Bru1-2 mutants displayed reduced growth and survival after the second HS relative to the wild type Col-0 control (Figure 1a). We next confirmed that the basal thermotolerance (i.e. the level of HS at 44°C that a not-acclimatized plant can survive) and the acquired thermotolerance (i.e. the level of HS at 44°C that a plant can survive after acclimation for 1 h at 37°C) were not affected in bru1-2 mutants (Supplementary Figure S1). Together, this indicates that bru1-2 mutants are specifically defective in the long-term, but not the acute HS responses.

BRU1 mediates sustained transcriptional induction of HSA32 after HS

To begin to investigate the molecular basis of this loss-of-memory phenotype, we next analyzed the expression of HSA32 in bru1-2 mutants. HSA32 is essential for HS memory in *A. thaliana* (Charng et al., 2006) and is highly induced by HS. Interestingly, induction of HSA32 is sustained over 3 d following the ACC treatment (Charng et al., 2006, Stief et al.,...
227 2014) and thus the expression pattern correlates well with HS memory. We profiled transcript
228 levels of acclimated plants at the end of the ACC treatment and during a 3 d recovery phase.
229 Similar to the Col-0 wild type, bru1-2 mutants displayed high induction of HSA32 and
230 sustained high expression levels during the first day of recovery (Figure 1b). However, bru1-
231 2 thereafter displayed a stronger decline of HSA32 expression compared to wild type,
232 consistent with a role in HS memory.

The sustained induction of HSA32 after ACC occurs at the transcriptional level, as
233 was previously found by the quantification of unspliced transcripts (Brzezinka et al., 2016).
234 Since splicing occurs in close proximity to transcription, quantifying unspliced transcript
235 levels is used as a proxy for transcriptional activity (Bährle et al., 2007, Stief et al., 2014).
236 Unspliced HSA32 transcript levels in bru1-2 were similar to Col-0 until 24h after ACC, but
237 thereafter declined faster (Figure 1c), thus confirming the results for the spliced HSA32
238 transcripts and indicating that BRU1 acts to sustain induction of HSA32 at the transcriptional
239 level.

bru1 mutants are not generally hyper-sensitive to HS
240 BRU1 has been previously implicated in DNA damage repair and bru1 mutants are hyper-
241 sensitive to DNA damage, resulting in increased cell death (Takeda et al., 2004). Thus, we
242 tested whether the HS memory defect in bru1-2 could be ascribed to this hyper-sensitivity.
243 To this end, we first tested whether ACC increased cell death in bru1-2 cotyledons using
244 Trypan Blue staining. This staining visualizes individual dead cells within tissues. Under no-
245 HS conditions, we did not observe any lesions in Col-0 and only very few in bru1-2 (Figure
246 2). After ACC the proportion of wild type seedlings that showed individual dead cells on
247 their cotyledons increase to 39 % (Figure 2). In contrast, only 18 % of bru1-2 seedlings
displayed lesions on their cotyledons, indicating that the ACC treatment does not induce increased cell death in *bru1-2* compared to Col-0.

BRU1 has also been implicated in cell cycle control; *BRU1* is expressed during the S-phase of the cell cycle and its loss delays cell cycle progression (Suzuki *et al.*, 2005). To estimate cell division dynamics after ACC, we assayed the expression levels of histone H4, whose expression is limited to the S-phase. In wild type, histone H4 transcript levels were roughly halved after ACC and remained slightly reduced during the 3 d recovery period that was assayed. In *bru1-2* mutants, histone H4 transcript levels in non-stressed seedlings were roughly halved compared to Col-0 (Figure 3), confirming a general reduction in cell cycle progression (Suzuki *et al.*, 2005). In contrast to wild type, H4 transcript levels in *bru1-2* were not further reduced after HS (Figure 3).

Consistent with a role in DNA damage repair, it was previously reported that the DNA damage marker *PARP2* was hyper-induced in *bru1-2* mutants (Takeda *et al.*, 2004). Thus, we were interested to test whether ACC (further) induced the expression level of the DNA damage markers *RAD51* and *PARP2* (Breuer *et al.*, 2007). Interestingly, neither gene displayed increased expression levels in *bru1-2* under our no-HS conditions. After HS, *RAD51* and *PARP2* transcript levels did not change in wild type (Figure 3). The same was true for *bru1-2* mutants. Together, our findings indicate that the ACC treatment, which is a moderate HS, does not induce ectopic DNA damage or sustained repression of cell division. Moreover, they indicate that DNA damage responses that are mediated by *RAD51* and/or *PARP2* are not ectopically triggered by our NHS growth conditions or by the ACC treatment in *bru1-2*. This corroborates the idea that *BRU1* has a specific function in sustaining HS memory gene expression, and that the observed HS memory defects are not caused by a generic HS hyper-sensitivity.
FAS1 and FAS2 are not required for HS memory

Mutants in two subunits of the histone chaperone CAF-1 in A. thaliana, fas1 and fas2, have similar developmental phenotypes as brul, such as fascinated stems (Kaya et al., 2001), and the mammalian orthologues of BRU1 and CAF-1 interact functionally (Huang et al., 2018).

To test whether CAF-1 is also required for HS memory, we tested mutants in the FAS1 and FAS2 subunits for their ability to maintain acquired thermotolerance with the assay described above (Figure 4). In contrast to brul-2 and brul-4, the loss-of-function mutants fas1-4 and fas2-4 displayed normal HS memory. This indicates that BRU1 function during HS memory is independent of CAF-1 and that the common developmental aberrations of the mutants do not cause the phenotype.

BRU1 is required for sustained activation of HS memory genes

To confirm that the mutation in BRU1 was responsible for the phenotype observed in brul-2, we tested two additional alleles, brul-4 (in the Col-0 background, Figure 4) and brul-1 (in the Ws background, Figure 5a) (Suzuki et al., 2004, Takeda et al., 2004, Ohno et al., 2011).

Both alleles showed a similar phenotype as brul-2 in the HS memory assay. Moreover, reintroduction of a functional BRU1 copy (pBRU1::BRU1-GFP) into brul-1 (Ohno et al., 2011) complemented the HS memory defects (Figure 5a). We also confirmed nuclear expression of the BRU1-GFP transgene (Figure 5b, c).

Besides HSA32 a number of other genes display sustained activation after ACC and are together referred to as HS memory genes (Charng et al., 2006, Charng et al., 2007, Stief et al., 2014, Brzezinka et al., 2016). To analyze whether BRU1 affects expression of other memory genes besides HSA32, we analyzed their transcript levels during a 3 d recovery phase after ACC. We investigated transcript levels of the HS memory-associated genes APX2, HSA32, HSP22.0, and HSP21 (Stief et al., 2014, Lämke et al., 2016), as well as the
putative upstream regulator HSFA2 (Nishizawa et al., 2006, Charng et al., 2007, Lämke et al., 2016), and the HS-inducible non-memory gene HSP101 (Hong and Vierling, 2000) in the Ws wild type, bru1-1 and the complementation line. For HSP101, no significant difference was found in bru1-1 relative to Ws (Figure 6). For HSFA2, we observed a slightly reduced induction at 0 and 4 h after ACC in bru1-1, but later no significant difference relative to the Ws control. In contrast, for APX2, HSA32, HSP22.0, and HSP21 induction after ACC was more highly sustained in Ws wild type between 28 and 76 h after ACC relative to HSP101 and HSFA2. However, in bru1-1 the expression started to decrease already between 4 h and 28 h and declined significantly faster than in either Ws or the complemented line. This indicates that BRU1 is widely required for sustained activation of HS memory-associates genes, but it is dispensable for the initial activation of these genes.

Global transcriptome analysis indicates that BRU1-dependent genes are enriched among HS memory genes

We next sought to investigate the requirement of BRU1 for HS-dependent gene expression at the global level. To this end we performed transcriptome analysis using ATH1 microarray technology on Col-0 wild type and bru1-2 seedlings sampled at either 4 h or 52 h after ACC, and a no-HS control that was sampled together with the 4 h time point (Stief et al., 2014). We first identified ACC-responsive genes (based on log₂FC > 2 or < -2 and FDR corrected p value <0.05) in Col-0 for either ACC time point relative to NHS (Stief et al., 2014). Figure 7a displays a clustered heat map analysis of the log₂FC changes of these genes in Col-0 and bru1-2 relative to the NHS control. Overall, the data cluster by treatment rather than genotype indicating that treatment-specific effects outweigh genotype effects. Moreover, the genotype differences at 52 h appear more pronounced than at 4 h (see below for a more detailed analysis). We next investigated the expression correlation at either time point for the genes
that are significantly changed in Col-0. At 4 h, genes that are upregulated in Col-0 tend to be
more strongly upregulated in bru1-2 whereas downregulated genes seem to be less strongly
downregulated (Figure 7b). In contrast, at 52 h genes that are upregulated in Col-0 tend to be
upregulated less strongly or not at all in bru1-2 and downregulated genes are less strongly or
not at all downregulated in bru1-2. Thus, the response at 52 h is dampened in bru1-2. These
findings confirm the hypothesis that bru1-2 mutants have a reduced HS memory response.
This was next quantified in Figure 7c; the three classes of genes that are differentially
expressed in Col-0 at 4 h ACC or 52 h ACC relative to NHS (4 h only, 4 h and 52 h, 52 h
only) are all enriched in genes that are differentially expressed in bru1-2 versus Col-0
(ACC/NHSbru1-2 at least two-fold different from ACC/NHS Col-0) compared to the whole
genome (8-75 % versus 1 % of all other genes). More specifically, more than half of the
genes that are upregulated in Col-0 ACC versus NHS at 52 h only (54 %), and more than half
of the genes that are downregulated at either both time points (75 %) or 52 h only (60 %), are
differentially expressed in bru1-2 compared to the corresponding Col-0 time point. The genes
that are differentially expressed in bru1-2 under control conditions are listed in Supplemental
Data Set S1. In summary, BRU1 is required for the correct expression of HS-responsive
genes at a global level. Notably, both upregulated and downregulated genes were strongly
affected at 52 h and for both groups the differential expression in bru1-2 was dampened
(Figure 7b). This trend was not observed for the genes upregulated at 4 h, corroborating the
idea that BRU1 is mostly required for the memory phase rather than for acute HS responses.

Discussion

Here, we have identified a role for the chromatin-regulatory protein BRU1 during HS
memory in A. thaliana. Interestingly, BRU1 is not required for the acquisition of
thermotolerance or basal thermotolerance, and it is dispensable for early HS responses and
for the initial HS gene activation. At the molecular level, \textit{BRU1} is required to maintain high levels of expression in HS memory-associated genes throughout the memory phase. Globally, it is also required for sustained repression after HS as revealed by the transcriptome analysis. Our observations are in line with the previously established functions of \textit{BRU1} (see below).

\textit{BRU1} has been implicated in the epigenetic inheritance of transcriptional silencing and in the DNA damage response (Suzuki \textit{et al.}, 2004, Takeda \textit{et al.}, 2004). In addition, it has very similar phenotypes as the histone chaperone CAF-1 (Takeda \textit{et al.}, 2004). Together, this has led to a model where BRU1 ensures faithful inheritance of chromatin states across DNA replication and cell division. Recent mechanistic work from the mammalian field indicates that TONSL, the BRU1 orthologue, directly binds to ssDNA during DNA damage repair and recruits RAD51 (Huang \textit{et al.}, 2018). In addition, TONSL regulates DNA replication and binds to newly incorporated nucleosomes after replication (Saredi \textit{et al.}, 2016). In summary, these findings are consistent with the idea that the conserved function of BRU1 may be not only in DNA damage repair, but also in the faithful inheritance of chromatin states after replication.

The requirement of the chromatin regulator \textit{BRU1} for HS memory strengthens the observation that chromatin structure and organization are important for sustained gene expression during HS memory. Previously, hyper-methylation of histone H3K4 was implicated in this process (Lämke \textit{et al.}, 2016). Histone H3K4 hyper-methylation was also implicated in somatic stress memory after drought stress, salt stress and pathogen infection (Jaskiewicz \textit{et al.}, 2011, Ding \textit{et al.}, 2012, Feng \textit{et al.}, 2016), as well as in priming phenomena in metazoans and yeast (Ng \textit{et al.}, 2003, Guenther \textit{et al.}, 2007, D'Urso and Brickner, 2014, D'Urso \textit{et al.}, 2016). It remains to be investigated in future studies, whether BRU1 is required for the maintenance of H3K4 methylation at memory genes or for the control of nucleosome occupancy at these loci. Due to the heterogeneity of whole seedlings
and technical limitations, chromatin immunoprecipitation analyses provide a relatively coarse picture and are to be interpreted with caution. Our findings extend previous reports on the function of BRU1 in the key point that BRU1 may not only be required for the inheritance of repressive chromatin states, but also for the inheritance of active chromatin states that are conducive to ongoing transcription. This suggests a mode of action where BRU1 does not bind to individual chromatin modifications that are to be copied but may act more generally in the faithful inheritance of such chromatin modifications. This may be achieved by providing a binding platform for various reader and writer enzymes or by ensuring the transmission of the epigenetic information from “old” nucleosomes onto “new” nucleosomes.

We found that CAF-1 is not required for HS memory. This is a noticeable difference to other phenotypic defects that have been observed in bru1, such as stem fasciation and DNA damage repair (Kaya et al., 2001, Takeda et al., 2004). It suggests that although CAF-1 and BRU1 act in connected pathways, their functions do not fully overlap. Notably, CAF-1 has been implicated in the priming of plant defences, as it modulates nucleosome occupancy of primed genes (Mozgova et al., 2015). Whether BRU1 is also required for defence priming or stress memory in response to other biotic or abiotic stress cues remains to be investigated.

HS memory at the physiological level was reported to last for at least three days (Stief et al., 2014). At the molecular level, a memory after HS as evidenced by enhanced re-induction after a second HS has been detected for up to seven days (Liu et al., 2018). The HS treatment that is used to activate the memory response (ACC or an even milder treatment) does not cause visual damage and only a minimal delay in growth (Stief et al., 2014). Hence, considerable growth is taking place during the memory period that may at least partially be attributed to ongoing cell division. This is in line with our finding that ACC reduces histone H4 expression, as a marker gene for the S-phase, only transiently and moderately. Although detailed further investigations will be required to determine cell division rates in different
tissues after ACC, it appears plausible that the memory is transmitted over at least a few cell
divisions. This raises the question of how memory components are inherited during DNA
replication and cell division. Previous work has demonstrated that histone modifications as
well as nucleosome occupancy both regulate HS memory (Brzezinka et al., 2016, Lämke et
al., 2016). It is tempting to speculate that BRU1 may play a role in the inheritance of HS
memory determinants through DNA replication and their faithful transmission to daughter
cells.

Acknowledgements

We thank S. Takeda and the Nottingham Arabidopsis Stock Centre for seeds. We thank D.
Walther and C. Kappel for help with microarray analyses. We thank M. Lenhard for critical
reading of the manuscript. IB acknowledges funding from a Sofja-Kovalevskaja-Award
(Alexander-von-Humboldt-Foundation), CRC973 (project A2, Deutsche
Forschungsgemeinschaft), and the European Research Council (ERC CoG 725295
CHROMADAPT).

Conflict of interest

The authors declare no conflict of interest.
Figure Legends

Figure 1 *BRU1* is specifically required for HS memory and sustained transcriptional induction of *HSA32* after HS

(a) *Bru1*-2 mutants are impaired in HS memory at the physiological level. 4 d-old seedlings of the indicated genotypes were subjected to ACC treatment; two days later they were exposed to a tester HS at 44°C for 90 min. All genotypes were grown on the same plate. Photographs were taken 14 d after ACC. One representative of more than three independent experiments is shown.

(b, c) Transcript levels of spliced (b) and unspliced (c) *HSA32* were analyzed by quantitative RT-PCR in Col-0 and *bru1*-2 at the indicated time points after the end of ACC or in no-HS controls (NHS) harvested at corresponding time points. Expression values were normalized to *TUB6* and to 0 h NHS. Data are averages of three biological replicates ± SEM. Data are plotted on a log_{10} scale.

Figure 2 Cell death after ACC treatment is not increased in *bru1*-2 mutants relative to Col-0 wild type

(a-h) Cell death was assessed by Trypan Blue staining of 4 d-old seedlings of Col-0 (a, c, e, g) and *bru1*-2 (b, d, f, h) that were treated with ACC (cf. Figure 1a); 96 h after the end of ACC, mock- (a, b) or ACC-treated (c-h) seedlings were stained with Trypan Blue to visualize cell death and examined under a Leica Stereomicroscope. (g, h) Close-ups of representative cotyledons with lesions. Size bars: 5 mm (a-f), 1 mm (g, h).

(i) Percentage of seedlings with lesions of the indicated genotypes and treatments shown in (a-h). n indicates the number of seedlings that were scored for the analysis.

Figure 3 Transcript levels of DNA damage marker genes and histone H4 in *bru1*-2
Transcript levels of histone H4, RAD51 and PARP2 were analyzed by quantitative RT-PCR in Col-0 and bru1-2 at the indicated time points after the end of ACC or in no-HS controls (NHS). Expression values were normalized to TUB6 and Col-0 0 h NHS. Data are averages of three biological replicates ± SEM.

Figure 4 The *FAS1* and *FAS2* genes are dispensable for HS memory

(a - d) 4 d-old seedlings of the indicated genotypes (a) were subjected to ACC treatment; two days later they were exposed to a tester HS at 44°C for 90 min (c). The control plates were either exposed to ACC only (b) or to the tester HS only (d). For each treatment all genotypes were grown and treated on the same plate. Photographs were taken 14 d after ACC. One representative of several independent experiments is shown.

Figure 5 Complementation of bru1-1 with a *pBRU1::BRU1-GFP* construct

(a) BRU1-GFP expressed from *pBRU1::BRU1-GFP* complements the HS memory defect of *bru1-1*. 4d-old seedlings of the indicated genotypes were subjected to ACC treatment; 3 d later they were exposed to a tester HS at 44°C for the indicated times. Photographs were taken 14 d after ACC (Supplemental Figure S2) and seedling survival was quantified as described previously (Brzezinka et al., 2016). *, p<0.05; **, p<0.01, Fisher’s exact test. Data shown are averages of at least two independent biological replicates each containing at least 43 individuals per genotype.

(b) BRU1-GFP expressed from *pUBC10::BRU1-GFP* is localized to the nucleus of transiently transformed *A. thaliana* protoplasts. The GFP signal is shown in green, chlorophyll autofluorescence is shown in blue.

(c) BRU1-GFP expressed from *pBRU1::BRU1-GFP* is localized to the nucleus in the roots of stably transformed *A. thaliana*. The GFP signal is shown in green.
Figure 6 Sustained induction of several memory genes after ACC is impaired in *bru1-1*

Expression profiles of HS memory-associated genes (*APX2, HSA32, HSP22.0, HSP21, HSFA2*, and a HS-inducible non-memory gene (*HSP101*) after ACC in *Ws* wild type, *bru1-1* mutants and the complementation line. Transcript levels determined by qRT-PCR were normalized to the *At4g26410* reference gene and the respective NHS control harvested at the same time point. At each time point different letters (a, b, c) indicate significant differences between the tested genotypes (*p*<0.05, Student’s t-test), whereas the same letter indicates that there was no significant difference detected. Data represent averages of at least three biological replicates ± SEM.

Figure 7 Global gene expression analysis after ACC in *bru1-2*

(a) Clustered heat map analysis including all 452 differentially expressed genes (DEGs) with log2FC > 2 or < -2 in Col-0, including 356 “4 h-only” DEGs, 45 “4 and 52” h DEGs, and 51 “52 h-only” DEGs. Scale indicates log2FC relative to the NHS control for Col-0 and *bru1-2*.

(b) Expression correlation analysis of DEGs (log2FC > 2 or < -2) at 4 h (top panel) and 52 h (bottom panel) in Col-0 and *bru1-2*. DEGs that differ in *bru1-2* at least two-fold from the value of Col-0 are highlighted in orange.

(c) Percentage of DEGs whose induction or repression differed at least twofold in *bru1-2* compared to Col-0 in the indicated classes. The total number of DEGs in these classes is indicated with *n*. The number of differentially expressed genes is enriched among the HS-responsive genes compared to the rest of the genome (others).

Supplemental Figures
Supplemental Figure S1 The bru1-2 mutant is not defective in the acquisition of
thermotolerance or basal thermotolerance
(a) bru1-2 is not impaired in the acquisition of thermotolerance. 4 d-old seedlings of the
indicated genotypes were treated for 1 h at 37°C, then 90 min at RT, then a HS at 44°C for
the indicated times. Pictures were taken after 10 d of recovery at normal growth temperature.
(b) 4 d-old seedlings of the indicated genotypes were treated for the indicated times at 44°C
without prior acclimation. Pictures were taken after 10 d of recovery at normal growth
temperatures.

Supplemental Figure S2 Complementation of HS memory phenotype with a
pBRU1::BRU1-GFP construct (accompanying Figure 5a)
4 d-old seedlings of the indicated genotypes were subjected to ACC treatment; 3 d later they
were exposed to a tester HS at 44°C for the indicated times. Photographs were taken 14 d
after ACC.

Supplemental Table
Supplemental Table S1 Sequences of oligonucleotides.

Supplemental Data Set
Supplemental Data Set S1 List of differentially expressed genes in bru1-2 under no-HS
(NHS) or HS conditions.
References

Figure 1 *BRU1* is specifically required for HS memory and sustained transcriptional induction of *HSA32* after HS

(a) *Bru1-2* mutants are impaired in HS memory at the physiological level. 4 d-old seedlings of the indicated genotypes were subjected to ACC treatment; two days later they were exposed to a tester HS at 44°C for 90 min. All genotypes were grown on the same plate. Photographs were taken 14 d after ACC. One representative of more than three independent experiments is shown.

(b, c) Transcript levels of spliced (b) and unspliced (c) *HSA32* were analyzed by quantitative RT-PCR in Col-0 and *bru1-2* at the indicated time points after the end of ACC or in no-HS controls (NHS) harvested at corresponding time points. Expression values were normalized to *TUB6* and to 0 h NHS. Data are averages of three biological replicates ± SEM. Data are plotted on a log₁₀ scale.
Cell death after ACC treatment is not increased in *bru1-2* mutants relative to Col-0 wild type

(a-h) Cell death was assessed by Trypan Blue staining of 4 d-old seedlings of Col-0 (a, c, e, g) and *bru1-2* (b, d, f, h) that were treated with ACC (cf. Figure 1a); 96 h after the end of ACC, mock- (a, b) or ACC-treated (c-h) seedlings were stained with Trypan Blue to visualize cell death and examined under a Leica Stereomicroscope. (g, h) Close-ups of representative cotyledons with lesions. Size bars: 5 mm (a-f), 1 mm (g, h).

(i) Percentage of seedlings with lesions of the indicated genotypes and treatments shown in (a-h). n indicates the number of seedlings that were scored for the analysis.
Figure 3 Transcript levels of DNA damage marker genes and histone H4 in bru1-2

Transcript levels of histone H4, RAD51 and PARP2 were analyzed by quantitative RT-PCR in Col-0 and bru1-2 at the indicated time points after the end of ACC or in no-HS controls (NHS). Expression values were normalized to TUB6 and Col-0 0 h NHS. Data are averages of three biological replicates ± SEM.
Figure 4 The FAS1 and FAS2 genes are dispensable for HS memory

(a - d) 4 d-old seedlings of the indicated genotypes (a) were subjected to ACC treatment; two days later they were exposed to a tester HS at 44°C for 90 min (c). The control plates were either exposed to ACC only (b) or to the tester HS only (d). For each treatment all genotypes were grown and treated on the same plate. Photographs were taken 14 d after ACC. One representative of several independent experiments is shown.
Figure 5 Complementation of bru1-1 with a pBRU1::BRU1-GFP construct
(a) BRU1-GFP expressed from pBRU1::BRU1-GFP complements the HS memory defect of bru1-1. 4d-old seedlings of the indicated genotypes were subjected to ACC treatment; 3 d later they were exposed to a tester HS at 44°C for the indicated times. Photographs were taken 14 d after ACC (Supplemental Figure S2) and seedling survival was quantified as described previously (Brzezinka et al., 2016). *, p<0.05; **, p<0.01, Fisher’s exact test. Data shown are averages of at least two independent biological replicates each containing at least 43 individuals per genotype.
(b) BRU1-GFP expressed from pUBC10::BRU1-GFP is localized to the nucleus of transiently transformed A. thaliana protoplasts. The GFP signal is shown in green, chlorophyll autofluorescence is shown in blue.
(c) BRU1-GFP expressed from pBRU1::BRU1-GFP is localized to the nucleus in the roots of stably transformed A. thaliana. The GFP signal is shown in green.
Figure 6 Sustained induction of several memory genes after ACC is impaired in bru1-1
Expression profiles of HS memory-associated genes (APX2, HSA32, HSP22.0, HSP21), HSFA2, and a HS-inducible non-memory gene (HSP101) after ACC in Ws wild type, bru1-1 mutants and the complementation line. Transcript levels determined by qRT-PCR were normalized to the At4g26410 reference gene and the respective NHS control harvested at the same time point. At each time point different letters (a, b, c) indicate significant differences between the tested genotypes (p<0.05, Student’s t-test), whereas the same letter indicates that there was no significant difference detected. Data represent averages of at least three biological replicates ± SEM.
Figure 7 Global gene expression analysis after ACC in bru1-2
(a) Clustered heat map analysis including all 452 differentially expressed genes (DEGs) with log2FC > 2 or < -2 in Col-0, including 356 “4 h-only” DEGs, 45 “4 and 52” h DEGs, and 51 “52 h-only” DEGs. Scale indicates log2FC relative to the NHS control for Col-0 and bru1-2.
(b) Expression correlation analysis of DEGs (log2FC > 2 or < -2) at 4 h (top panel) and 52 h (bottom panel) in Col-0 and bru1-2. DEGs that differ in bru1-2 at least two-fold from the value of Col-0 are highlighted in orange.
(c) Percentage of DEGs whose induction or repression differed at least twofold in bru1-2 compared to Col-0 in the indicated classes. The total number of DEGs in these classes is indicated with n. The number of differentially expressed genes is enriched among the HS-responsive genes compared to the rest of the genome (others).
Supplemental Figure S1 The *bru1-2* mutant is not defective in the acquisition of thermotolerance or basal thermotolerance

(a) *bru1-2* is not impaired in the acquisition of thermotolerance. 4 d-old seedlings of the indicated genotypes were treated for 1 h at 37°C, then 90 min at RT, then a HS at 44°C for the indicated times. Pictures were taken after 10 d of recovery at normal growth temperature. (b) 4 d-old seedlings of the indicated genotypes were treated for the indicated times at 44°C without prior acclimation. Pictures were taken after 10 d of recovery at normal growth temperatures.
Supplemental Figure S2 Complementation of HS memory phenotype with a \textit{pBRU1::BRU1-GFP} construct (accompanying Figure 5a)

4 d-old seedlings of the indicated genotypes were subjected to ACC treatment; 3 d later they were exposed to a tester HS at 44°C for the indicated times. Photographs were taken 14 d after ACC.
Supplemental Table S1: Sequences of oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1547/F-AT4G26410</td>
<td>GAGCTGAAGTGTTCTCAATGAC</td>
</tr>
<tr>
<td>1548/R-AT4G26410</td>
<td>GGTCGCAACTACCAATGATCC</td>
</tr>
<tr>
<td>363/AT4G27670_qPCR_F</td>
<td>TGGACGTCTCTCCTTCGATGT</td>
</tr>
<tr>
<td>364/AT4G27670_qPCR_R</td>
<td>TGCACGAACTCTGACACTCCACT</td>
</tr>
<tr>
<td>267/HSP101F</td>
<td>ATGACCCGCTGTATGGTGCTAG</td>
</tr>
<tr>
<td>268/HSP101R</td>
<td>CGCCTGACTATGTAAGAAGCT</td>
</tr>
<tr>
<td>253/Hsa32F</td>
<td>CGGTCAAGCGAGTTTGAGAGGA</td>
</tr>
<tr>
<td>254/Hsa32R</td>
<td>GGAATCCGGCGATTGGCCAGATCA</td>
</tr>
<tr>
<td>637/AT4G10250 REV</td>
<td>TTCAGGAGAGTTTCGAGGTAA</td>
</tr>
<tr>
<td>638/AT4G10250 FOR</td>
<td>ATTCGGAGACAGTTCAAGCTACCT</td>
</tr>
<tr>
<td>315/Hsa32uspl_F</td>
<td>TATGCTTACTGAGAATGCTCTTG</td>
</tr>
<tr>
<td>at5g59690 317/H4_qF</td>
<td>TTCTGAGAGCACATCCAAGGA</td>
</tr>
<tr>
<td>at5g59690 327/H4_qR2</td>
<td>GTGACACGATCAGAATACGT</td>
</tr>
<tr>
<td>323/RAD51_qF</td>
<td>CGAGAAAGGATATCCCTCCTGCAG</td>
</tr>
<tr>
<td>324/RAD51_qR</td>
<td>GCACATAGGACCAAGCGAGG</td>
</tr>
<tr>
<td>328/PARP2_qF</td>
<td>TCCTATGGGCTGTTCTCGATAAC</td>
</tr>
<tr>
<td>329/PARP2_qR</td>
<td>GACAGATGGCTCAAGATCCTCTCCTAA</td>
</tr>
<tr>
<td>APX2 633/AT3G09640</td>
<td>ACTCCCTTTCGAGCAAAACCCAGG</td>
</tr>
<tr>
<td>634/AT3G09640</td>
<td>CTTGATGCTCTCTTCTCTCCCA</td>
</tr>
<tr>
<td>281/HsfA2LP</td>
<td>TCGTCAGCAATATTGATCC</td>
</tr>
<tr>
<td>282/HsfA2RP</td>
<td>CAGATCATCCATCAGCTCTGC</td>
</tr>
<tr>
<td>160/TUB6 RT R</td>
<td>GTCATGTCAGTTGCGTCTT</td>
</tr>
<tr>
<td>161/TUB6 RT F</td>
<td>GGTGAAGGAAATGGAGAGAT</td>
</tr>
</tbody>
</table>